Estimation of matrices with row sparsity
نویسندگان
چکیده
An increasing number of applications is concerned with recovering a sparsity can be defined in terms of lq balls for q 2 [0, 2), defined as Bq(s) = { v = (vi) 2 R2 : n2 ∑
منابع مشابه
On nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملLeveraging Sparsity to Speed Up Polynomial Feature Expansions of CSR Matrices Using K-Simplex Numbers
We provide an algorithm that speeds up polynomial and interaction feature expansion on sparse matrices. The algorithm operates on and produces a compressed sparse row matrix with no densification. It works by defining a bijective function involving simplex numbers of column indices in the original matrix to column indices in the expanded matrix. This function allows for only the nonzero element...
متن کاملLinear preservers of g-row and g-column majorization on M_{n,m}
Let A and B be n × m matrices. The matrix B is said to be g-row majorized (respectively g-column majorized) by A, if every row (respectively column) of B, is g-majorized by the corresponding row (respectively column) of A. In this paper all kinds of g-majorization are studied on Mn,m, and the possible structure of their linear preservers will be found. Also all linear operators T : Mn,m ---> Mn...
متن کاملSparsity Order Estimation from a Single Compressed Observation Vector
We investigate the problem of estimating the unknown degree of sparsity from compressive measurements without the need to carry out a sparse recovery step. While the sparsity order can be directly inferred from the effective rank of the observation matrix in the multiple snapshot case, this appears to be impossible in the more challenging single snapshot case. We show that specially designed me...
متن کاملNear-Optimal Estimation of Simultaneously Sparse and Low-Rank Matrices from Nested Linear Measurements
In this paper we consider the problem of estimating simultaneously low-rank and row-wise sparse matrices from nested linear measurements where the linear operator consists of the product of a linear operatorW and a matrix Ψ . Leveraging the nested structure of the measurement operator, we propose a computationally efficient two-stage algorithm for estimating the simultaneously structured target...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Probl. Inf. Transm.
دوره 51 شماره
صفحات -
تاریخ انتشار 2015